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The tibiofibular syndesmosis is a fibrous joint in 
which the tibia and fibula are connected by a 
strong membrane and ligamentous structures.[1] 
This complex anatomical configuration includes 
the anteroinferior tibiofibular ligament (AITFL), 
posteroinferior tibiofibular ligament (PITFL), 
interosseous ligament (IOL), and transverse 
tibiofibular ligament (TTFL). It possesses sufficient 
flexibility to permit small-scale rotational and 
translational movements of the fibula during 
different phases of gait.[2] Syndesmotic injuries 
typically occur following high-energy trauma, 

Objectives: This study aims to identify the optimal suture-button 
orientation which supports physiological ligament healing by 
limiting pathological lateral and posterior translation, as well 
as rotational motion in the axial plane of the syndesmosis joint, 
through dynamic suture-button fixation.
Materials and methods: A solid ankle model and a syndesmotic 
injury model were developed using finite element analysis. To 
address the syndesmotic injury, five different suture-button fixation 
configurations were designed. These models were analyzed by 
simulating the loading conditions during the heel-off phase of the 
stance phase. Evaluations included fibular displacement in the 
anterior-posterior and medial-lateral planes, rotational angles in the 
axial plane, and measurements of anterior and posterior tibiofibular 
clear space (A-TFCS and P-TFCS).
Results: All models utilizing double suture-buttons demonstrated 
superior control of pathological fibular motion compared to the 
conventional single suture-button fixation technique (Model 1). 
Among them, the configuration employing double suture-buttons 
aligned with the anatomical orientations of the AITFL and 
PITFL (Model 3) was the most effective in achieving anatomical 
reduction and preserving physiological fibular motion. Model 5, 
which was specifically designed to minimize the risk of injury to 
neurovascular structures, tendons, and articular cartilage, reduced 
pathological displacement in the coronal and sagittal planes by 3% 
and 1%, respectively, compared to Model 3. However, it exhibited 
a 0.5° deficiency in limiting external rotation relative to Model 3.
Conclusion: The results obtained with Model 5 closely approximate 
those of the healthy ankle and demonstrate its potential as a 
promising fixation method which preserves critical anatomical 
structures. This model allows for anatomical reduction of the 
syndesmosis, effectively prevents pathological syndesmotic motion, 
and maintains physiological fibular movement. In light of these 
findings, we believe that Model 5 may be among the preferred 
techniques in the treatment strategies for syndesmotic injuries.
Keywords: Finite element, suture-button, syndesmotic injury, tibiofibular joint.
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athletic activities, or torsional stress to the ankle. 
If not appropriately managed, such injuries may 
result in long-term complications including chronic 
instability, post-traumatic arthrosis, and functional 
impairment.[3]

Regarding the performance of suture-button 
systems and conventional screw fixation methods 
for the treatment of syndesmotic injuries, it has 
been reported that conventional screw fixation 
limits physiological fibular motion due to its 
rigid structure leading to complications such 
as screw loosening or breakage.[4-7] In contrast, 
suture-button fixation is associated with lower 
complication rates compared to conventional screw 
fixation techniques.[8-11] Additionally, suture-button 
systems have been shown to significantly reduce 
the risk of malreduction, provide biomechanical 
strength comparable to traditional methods, allow 
greater postoperative range of motion, and promote 
ligament healing by enabling a more flexible form 
of stabilization that supports natural recovery 
processes.[8-11]

There is also evidence indicating that 
syndesmotic widening in the loaded ankle 
following suture-button fixation is comparable 
to that observed in an intact, healthy ankle.[8-11] 
However, there is still no consensus regarding the 
ability of suture-button constructs to adequately 
restrict fibular external rotation and posterior 
translation.[1,12-14] Although various suture-button 
configurations have been proposed for the 
treatment of syndesmotic injuries, the optimal 
method/configuration for such injuries remains 
unclear.[2]

Comprehensive studies evaluating the 
biomechanical effects of suture-button techniques 
applied in various configurations for the treatment 
of syndesmotic injuries on the distal tibiofibular 
joint remain limited. In the present study, we aimed 
to assess parameters related to distal tibiofibular 
joint stability by employing finite element analysis 
(FEA) and to evaluate different suture-button 
configurations in a model of unstable syndesmotic 
injury.

MATERIALS AND METHODS

In our study, following the three-dimensional 
(3D) modeling of a healthy ankle using computed 
tomography (CT) images, a model simulating 
syndesmotic injury was developed. Subsequently, 
five different fixation configurations employing a 
flexible fixation method suture-button were evaluated 

to determine the extent to which supraphysiological 
anterior-posterior and medial-lateral translations of 
the fibula in the sagittal plane, as well as rotational 
movement in the axial plane, could be limited in 
unstable syndesmotic injuries. For this purpose, 
biomechanical analyses were conducted using FEA 
to assess the distal tibiofibular clear space distance, 
the degree of external fibular rotation, and the 
amount of fibular translation along the x-, y-, and 
z-axes.

Preparation of 3D model

The right lower extremity of a healthy adult 
male individual, 35 years old, weighing 70 kg and 
170 cm tall, was scanned with CT at 0.5-mm slice 
intervals from the sole to the level of the knee joint. 
The device employed during the scan obtained 
images at a resolution of 512×512 pixels with a pixel 
size of 0.75 mm at an energy level of 120 kV. A total 
of 1000 slices were taken, and these slices were 
stored in Digital Imaging and Communications in 
Medicine (DiCOM) format. There was no history of 
trauma in the patient’s history. Also, no pathology 
was detected in the physical examination and 
imaging. The DICOM data were analyzed using the 
3D modeling software MIMICS® 12.11 (Materialise, 
Leuven, Belgium). Bone structures (tibia, fibula, 
talus, calcaneus, and navicular) were converted 
to stereolithography (STL) format by correcting 
the surface geometry and removing artifacts. The 
data in STL format was, then, transferred to the 
reverse engineering software GEOMAGIC® Studio 
(Geomagic, Durham, NC, USA) to edit the surface 
roughness and complete the missing parts. In this 
context, Non-Uniform Rational B-Splines (NURBS) 
surfaces were created and the final model was 
created using SolidWorks® (Dassault Systèmes, 
Waltham, MA, USA) software. Cancellous and 
cortical bone structures were defined in SolidWorks 
software and a model which was suitable for FEA 
was created.

Modeling of the ligaments

The anatomical structures of the ligaments 
which play roles in stabilizing the lower extremity 
were modeled based on literature data. In this 
context, AITFL, PITFL, transverse A total of 19 
ligaments, including the TTFL, IOL, and deltoid 
ligament, were designed as 3D solid models by 
taking into account their anatomical attachment 
points and their lengths in the neutral position 
(Figure 1). During the modeling process, the 
distances between the attachment points of the 
ligaments were defined following the values 
specified in the literature.[15-19]
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Finite element model and material 
characteristics

The model which was prepared for FEA was 
prepared using ANSYS Workbench version 19.0 
(Ansys Inc., Canonsburg, PA, USA) software. In 
creating the mesh structure, the mesh size was 
determined as 5 mm for bone structures and 
1 mm for ligaments. The resulting model consists of 
approximately 685962 nodes and 452828 elements. 
Cortical bone, cancellous bone, suture-button 
systems, and ligaments were defined according to 
the isotropic material characteristics specified in 
the literature.[20-22] The elastic modulus and Poisson's 
ratio values for cortical bone and cancellous bone are 
shown in Table I, and the mechanical characteristics 
of the ligaments are shown in Table II. A “frictionless” 
contact condition was defined between the bone 
structures and the interaction between the suture 
button and the cortical and cancellous bone was 
modeled in the same way. Seven different models 
were prepared for loading scenarios after the 
material and contact definitions were completed.

Injury model and fixation techniques

Syndesmosis injuries are classified in different 
ways depending on factors such as the force 
intensity, direction, and position of the foot at the 
time of the trauma. The present study was based 
on the Sikka classification employed for isolated 
syndesmosis injuries. Although Stage 1 injuries 
are managed with conservative treatment, surgical 
fixation is recommended for unstable injuries 
such as Stage 3 and Stage 4.[23] Our model was 
conducted by removing the AITFL, PITFL, TTFL, 

FIGURE 1. Lower extremity ligaments, interosseous membrane and finite element model mesh structure.

TABLE I
Bone and suture-button material characteristics

Materials Young’s modulus 
(E), MPa

Poisson’s ratio 
(ν)

Cortical bone 17000 0.3

Cancellous bone 700 0.2

No. 5 FiberWire 380000 0.39

Suture-button titanium 96000 0.36
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IOL, and the deltoid ligament complex to simulate a 
Sikka Stage 4 isolated syndesmotic injury.[24] In the 
present study, five different suture-button fixation 
models were developed for the treatment of inferior 
tibiofibular syndesmosis injuries. The first model, 
conventional fixation (Model 1), was created by 
placing the suture button parallel to the tibiotalar 
joint in the coronal plane and at a 30° anteromedial 
angle in the transverse plane, 1.5 cm proximal 
to the plafond. Divergence fixation (Model 2) the 
first suture-button was applied 1.5 cm proximal 
to the plafond, in the coronal plane parallel to the 
tibiotalar joint, and in the transverse plane at a 45° 
anteromedial orientation. The second suture-button 
was placed 1 cm proximal to the first one, with 
a 30° anteromedial orientation. The third model, 
fixation appropriate to AITFL and PITFL axis 
(Model 3). In this model, which aimed to mimic 
the AITFL, extending at an angle of 30 to 50° in the 
coronal plane and 65° in the sagittal plane relative 
to the tibial plafond, and the PITFL, extending 
at an angle of 20 to 40° in the coronal plane and 
60 to 85° in the sagittal plane; the first suture-
button, simulating the AITFL, was placed at the 
joint level through the distal posterior edge of the 

fibula, with a 45° anteromedial orientation in the 
coronal plane and 65° in the transverse plane; the 
second suture-button, simulating the PITFL, was 
inserted at the joint level through the anterior edge 
of the fibula, with a 30° posteromedial orientation 
in the coronal plane and 60° in the transverse 
plane, vascular, nerve and tendon sparing fixation 
(Model 4). In the third model, without altering 
the entry points of the suture-buttons at the joint 
level, the first suture-button was applied with a 
45° anteromedial orientation in the coronal plane 
relative to the plafond, and in the transverse plane, 
based on the anteromedial corner of the tibial 
crest; the second suture-button was applied with a 
30° orientation in the coronal plane relative to the 
plafond, and with a 20° posteromedial orientation 
in the transverse plane, based on the posteromedial 
corner of the tibial crest. Finally, vascular, nerve, 
tendon and cartilage-sparing fixation (Model 5) to 
avoid iatrogenic cartilage damage in the tibiofibular 
cartilage contact zone (TFCCZ), the suture-buttons 
in Model 4 were applied with the same orientations, 
but with entry points located 1 cm proximal to 
the joint level on the fibula. All fixation models 
are shown in Figure 2. These models were, then, 

TABLE II
Mechanical characteristics of ligaments

Ligament Young’s modulus (E), MPa Poisson’s ratio (ν)

Anteroinferior tibiofibular ligament 160 0.49

Posteroinferior tibiofibular ligament 160 0.49

Transverse tibiofibular ligament 160 0.49

Interosseous ligament 260 0.4

Anterior talofibular ligament 255.5 0.49

Posterior talofibular ligament 216.5 0.49

Calcaneofibular ligament 512 0.49

Interosseous talocalcaneal ligament 260 0.4

Cervical ligament 260 0.4

Lateral talocalcaneal ligament 260 0.4

Posterior talocalcaneal ligament 260 0.4

Medial talocalcaneal ligament 260 0.4

Talonavicular ligament 260 0.4

Deep anterior tibiotalar ligament 184.5 0.49

Deep posterior tibiotalar ligament 99.5 0.49

Tibiocalcaneal ligament 512 0.49

Tibionavicular ligament 512 0.49

Superficial posterior tibiotalar ligament 512 0.49

Tibiospring ligament 512 0.49

Interosseous membrane 260 0.4
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evaluated in line with different biomechanical 
requirements and clinical scenarios.[25]

Loading and simulation

During ankle dorsiflexion, the distal fibula moves 
slightly away from the tibia, allowing expansion 
of the ankle mortise. This dynamic separation is 

facilitated by the syndesmotic ligaments, which 
connect the distal ends of the tibia and fibula and 
possess physiological elasticity. To better understand 
the physiological behavior of the syndesmosis, 
the “heel-off” phase corresponding to the fourth 
sub-phase of the stance phase in the gait cycle was 
simulated. In the modeling, while the ankle was 

FIGURE 2. Syndesmosis injury model and fixation modalities.
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dorsiflexed by 10°, a compressive force of 3528 N and 
an anteriorly directed tangential force of 533 N were 
applied to the tibial plateau, followed by sagittal, 
coronal, rotational movements of the fibula and 
tibial fibular clear space measurements were made 
(Figure 3). In the present model, only the forces 
of the Achilles and tibialis anterior tendons were 
considered; other tendon forces and mediolateral 
forces were not included in the analysis.[26,27]

Defining the anatomical coordinate system

An anatomical coordinate system was established 
to facilitate the interpretation of post-loading 
translations. The x-axis was aligned parallel to the 
anatomical axis of the tibia. The y-axis was defined 
as the line connecting the long axis of the calcaneus 
to the midpoint of the second metatarsal head. The 
z-axis was designated as the line extending medially 

from the tip of the lateral malleolus toward the 
opposite malleolus (Figure 4).

Statistical analysis

Statistical analysis was performed using the 
GraphPad Prism version 9.0 (GraphPad Software, 
San Diego, CA, USA). Continuous data were 
expressed in mean ± standard deviation (SD) or 
median (min-max), categorical data were expressed 
in number and frequency. The distribution of the 
data was assessed using the Shapiro-Wilk test. 
Comparisons among the intact ankle, the injury 
model, and the five fixation configurations were 
performed using one-way analysis of variance 
(ANOVA), and Tukey’s post-hoc test was applied 
for multiple comparisons. A p value of <005 was 
considered statistically significant.

RESULTS

The biomechanical performance of suture-button 
fixation techniques was analyzed in the present 
study. Consistent with previous biomechanical 
investigations, the outcomes included lateral 
translation of the fibula relative to the tibia, 
posterior translation, external rotation relative to the 
tibia, and tibiofibular distance measurements.[14,24] 

FIGURE 3. Loading model and applied forces. FIGURE 4. Definition of the anatomical coordinate system.
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In addition to previous studies, our simulations also 
include measurements of the anterior and posterior 
tibiofibular clear space.

In the injury model, external rotation increased 
significantly compared with the intact ankle 
(13.840° vs. 1.170°, p<0.001). Conventional single 
suture-button fixation (Model 1: 4.950°) partially 
reduced this displacement but did not achieve 
physiological values (p<0.01). In contrast, the 
anatomical configuration replicating the AITFL and 
PITFL axes (Model 3: 1.6905°) and the neurovascular- 
and cartilage-sparing fixation (Model 5: 2.224°) 
produced values closest to the intact model, with 
no statistically significant difference (p>0.05). 
Tibiofibular clear space measurements revealed 
anterior widening (A-TFCS: 4.757 mm) and posterior 
narrowing (P-TFCS: 1.713 mm) in the injury model 
compared with the intact loaded ankle (A-TFCS: 
2.243 mm, P-TFCS: 5.098 mm) (p<0.001). Model 3 
(A-TFCS: 2.284 mm, P-TFCS: 4.661 mm) and Model 
5 (A-TFCS: 2.296 mm, P-TFCS: 4.343 mm) provided 
values closest to those of the intact ankle (p>0.05). 
Similarly, supraphysiological posterior (−2.682 mm) 
and lateral (−3.123 mm) displacements observed in 
the injury model were only partially corrected by 
Model 1 (AP: 0.098 mm, ML: −1.007 mm), whereas 
near-physiological values were obtained with Model 
3 (AP: 0.566 mm, ML: −0.544 mm) and Model 5 
(AP: 0.532 mm, ML: −0.613 mm). These findings 
indicate that multi–suture-button configurations 
aligned with anatomical orientations provide more 
effective restoration of physiological fibular motion 
compared with conventional fixation.

Displacement of the fibula in the 
anteroposterior plane according to the 
anatomical coordinate system

In the loading condition based on the forces 
effective in the fourth stage of the stance stage 
of walking, an anterior displacement of 0.755 
mm was detected in the fibula in the model 
representing the healthy ankle. In the Sikka 
Stage 4, isolated syndesmotic injury model 
created by removing the ligaments representing 
the AITFL, PITFL, TTFL, and IOL, a posterior 
translation of 2.682 mm appeared. Although the 
supraphysiological displacement of the fibula 
in the posterior direction in the sagittal plane 
could be limited by 80% in the traditional 
fixation method, Model 1, physiological values 
could not be obtained. Compared to the healthy 
ankle model, the supraphysiological posterior 
translation appearing in the anteroposterior plane 
was limited by 94.5%, 94.6%, and 93.5% in Models 
3, 4, and 5, respectively, and the closest values to 
the healthy ankle were obtained (Figure 5).

Displacement of the fibula in the mediolateral 
plane according to the anatomical coordinate 
system

When the loading model was applied, 0.278 mm 
lateral displacement appeared in the fibula in 
the intact ankle model, but after the syndesmotic 
ligaments were injured, the lateral translation 
increased significantly to 3.123 mm. Although 
74% of the supraphysiological movement could be 
limited in the traditional fixation method (Model 1), 
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91% and 88% of the supraphysiological movement 
were limited in Model 3 and Model 5, respectively, 
and values closer to physiological translation were 
obtained (Figure 5). The translation of the fibula in 
the anteroposterior plane and medial-lateral plane 
obtained as a result of the analyses is given in 
Figure 6 and 7.

Rotational displacement of the fibula

During the loading, 1.170° external rotation 
developed in the healthy ankle, while the rotation 
increased to 13.840° in the case of syndesmotic 
injury. Although the external rotation of the fibula 
might be limited up to 4.950° in Model 1, which is 
the traditional fixation method, 1.6905° rotation 

FIGURE 6. Anterior-posterior translation of the fibula following loading. (a) intact syndesmosis model, (b) syndesmosis injury model, 
(c) conventional fixation (Model 1), (d) divergence fixation (Model 2), (e) fixation appropriate to AITFL and PITFL axis (Model 3), 
(f) vascular, nerve and tendon sparing fixation (Model 4), (g) vascular, nerve, tendon and cartilage-sparing fixation (Model 5).
AITFL: Anteroinferior tibiofibular ligament; PITFL: Posteroinferior tibiofibular ligament.
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(f)
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was provided in Model 3, mimicking the ITFL and 
PITFL orientation, and the closest values to the 
healthy model were obtained. In Model 5, which 
we designed with the idea that it would minimize 
complications in clinical practice, although the 
rotation might be limited up to 2.224°, more 
favorable results were obtained than the traditional 

fixation method, and values close to physiological 
rotation were obtained (Figure 8).

Tibiofibular clear space

The distance between the anterior tibial 
tubercle and the lateral edge of the fibula (anterior 
tibiofibular clear space [A-TFCS]) and the distance 

(a)

(d)

(g)

(b)

(e)

(c)

(f)

FIGURE 7. Medial-lateral translation of the fibula following loading. (a) intact syndesmosis model, (b) syndesmosis injury model, 
(c) conventional fixation (Model 1), (d) divergence fixation (Model 2), (e) fixation appropriate to AITFL and PITFL axis (Model 3), 
(f) vascular, nerve and tendon sparing fixation (Model 4), (g) vascular, nerve, tendon and cartilage-sparing fixation (Model 5).
AITFL: Anteroinferior tibiofibular ligament; PITFL: Posteroinferior tibiofibular ligament.
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between the posterior tibial tubercle and the 
lateral edge of the fibula (posterior tibiofibular 
clear space [P-TFCS]) were measured and recorded 
in all models, 1 cm proximal to the ankle joint 
level (Figures 9 and 10). Although the A-TFCS and 
P-TFCS values in the unloaded healthy ankle were 
measured at 2.010 mm and 4.630 mm, respectively, 
both distances increased following loading in 
the dorsiflexion position, reaching 2.243 mm and 
5.098 mm. In contrast to the healthy model, in 
the syndesmotic injury model under loading, an 
increase in A-TFCS and a decrease in P-TFCS were 
observed. Among the fixation models, Model 3 

produced values closest to those of the loaded 
healthy ankle.

DISCUSSION

In the present study, we assessed parameters related 
to distal tibiofibular joint stability by employing 
FEA and evaluated different suture-button 
configurations in a model of unstable syndesmotic 
injury. The most physiological replication of fibular 
motion and anatomical syndesmosis reduction was 
achieved with the dynamic syndesmosis fixation 
method described in Model 3, which was based on 
replicating the anatomical orientations of the AITFL 
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FIGURE 9. Measurements of anterior (A-TFCS) and posterior (P-TFCS) tibiofibular clear space.
A-TFCS: Anterior tibiofibular clear space; P-TFCS: Posterior tibiofibular clear space.
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and PITFLs. Model 5, which was developed to reduce 
the risk of injury to vascular, neural, cartilaginous, 
and tendinous structures, demonstrated the second-
best performance among the dynamic fixation 
configurations, following Model 3.

Conventional suture-button fixation (Model 1) 
has been shown to limit supraphysiological lateral 
translation of the fibula and reduce posterior 
translation by approximately 80%. Despite 
these effects, the technique remains inadequate 
in restoring physiological fibular motion. These 
findings align with previous research indicating 
that suture-button systems have limited capacity to 
control fibular movement in the sagittal plane.[6,28-30] 
Therefore, achieving physiological syndesmotic 
fixation appears unattainable with this method 
alone. While some studies have suggested that single 
suture-button constructs provide biomechanical 
performance similar to that of a healthy ankle,[14,31] 
the present results and existing literature collectively 
imply that conventional suture-button systems are 
unlikely to offer optimal treatment for unstable 
syndesmotic injuries.

Models utilizing two suture-buttons in various 
configurations demonstrated biomechanical 
behavior more closely aligned with the physiological 
properties of the native ankle than the conventional 
single suture-button fixation (Model 1). The current 
body of literature on the biomechanical and functional 
outcomes of suture-button fixation is predominantly 
based on single suture-button applications.[8-10] 

Furthermore, it is well established that anatomical 
reconstruction after syndesmotic injuries leads to 
favorable results.[32] In this context, implementing 

multiple suture-buttons in anatomically aligned 
configurations appears to offer improved restoration 
of physiological fibular motion. The biomechanical 
data presented herein support this approach. 
Nonetheless, it should be acknowledged that 
conflicting results have been reported in previous 
studies.[33,34] A key factor contributing to these 
inconsistencies may be the limited scope of earlier 
investigations, which often focused solely on parallel 
or divergent two-suture-button configurations, 
without incorporating anatomically accurate 
orientations such as those mimicking the AITFL 
and PITFL.[13,24,33] Notably, O'Daly et al.[34] observed 
outcomes closely approximating those of the healthy 
ankle when adopting anatomical alignments based 
on AITFL and PITFL orientations. Consistent with 
these findings, fixation models emulating the 
anatomical axes of the AITFL and PITFL (Model 3), 
neurovascular- and tendon-sparing fixation (Model 
4), and configurations designed to protect vascular, 
neural, cartilaginous, and tendinous structures 
(Model 5) also yielded similar results.

Beyond the existing literature, the fixation 
techniques detailed in the models particularly the 
configuration replicating the anatomical axes of 
the AITFL and PITFL (Model 3), and the approach 
designed to preserve vascular, neural, joint cartilage, 
and tendinous structures (Model 5) achieved fibular 
lateral, posterior, and external rotation values 
closely approximating those of the healthy ankle. 
This outcome is primarily attributed to the more 
anatomically accurate alignment of the proposed 
fixation methods with the orientations of the AITFL 
and PITFL. The findings are in agreement with 
previously reported outcomes from anatomical 
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fixation techniques described in earlier 
studies.[30,32,34,35] Nevertheless, further biomechanical 
investigations are required to evaluate suture-
button fixation under physiological loading 
conditions using direct anatomical references to 
the AITFL and PITFL, and to comprehensively 
assess the post-fixation kinematics of fibular 
motion under load.

The vascular, nerve, articular cartilage, 
and tendon sparing fixation technique (Model 
5) produced results closely approximating the 
physiological loading characteristics of the fibula. 
This model was specifically designed to address 
the potential risk of neurovascular and other 
anatomical structure injuries associated with 
the fixation method (Model 3) which mimics 
the anatomical axes of the AITFL and PITFL.
[9,25] To minimize such risks, we hypothesized 
that the Model 5 configuration could better 
preserve neurovascular structures and adjacent 
tissues.[36] The outcomes supported this hypothesis, 
demonstrating substantial control over fibular 
rotation and translation. Consequently, this 
technique is believed to offer a lower complication 
profile compared to conventional fixation 
approaches.

Among the tested models, the vascular, nerve, 
joint cartilage, and tendon-preserving fixation 
technique (Model 5) and the fixation configuration 
replicating the anatomical axes of the AITFL 
and PITFL (Model 3) demonstrated the closest 
approximation to the A-TFCS and P-TFCS values 
of the intact ankle under dynamic loading. 
Tibiofibular clear space is a critical parameter for 
evaluating syndesmotic injuries,[37-40] and restoring 
it to near-physiological levels has been strongly 
associated with favorable postoperative clinical and 
radiological outcomes.[41,42] These results indicate 
that the use of these two fixation models may 
offer the most effective restoration of physiological 
syndesmotic integrity.

The results obtained using the conventional 
fixation method were consistent with previously 
published data, thereby supporting the validity of 
the FEA. Nonetheless, several limitations should 
be acknowledged. The model was created as a 
homogeneous solid based on computed tomography 
images from a single individual, and the material 
properties of bone and ligament structures were 
derived from earlier studies. Regarding loading 
conditions, only the fourth phase of the gait stance 
cycle was simulated; a dynamic representation of 
the entire cycle was not performed. Moreover, 

the fixation techniques assessed reflect time-zero 
mechanical conditions, meaning that aspects such 
as hardware loosening, suture material creep, and 
the stabilizing role of surrounding soft tissues were 
not incorporated. These are intrinsic limitations of 
finite element analyses and, in this context, are not 
considered to undermine the study's conclusions. 
An additional limitation is the omission of tibiotalar 
contact pressure, which has been highlighted 
as an important parameter in the evaluation of 
syndesmotic injuries.[43,44] While the present findings 
are promising, they should be validated in future 
experimental and clinical research.

In conclusion, this study demonstrated that double 
suture-button fixation provides superior control 
of pathological fibular motion compared with the 
conventional single suture-button technique. Among 
the tested configurations, Model 5, a vascular-, 
nerve-, tendon-, and cartilage-preserving approach, 
most closely reproduced the biomechanics of a 
healthy ankle. While it showed a minor limitation 
in controlling external rotation compared with 
Model 3, it offered additional advantages in 
reducing the risk of iatrogenic injury to critical 
anatomical structures. Taken together, these 
findings suggest that Model 5 achieves a balance 
between biomechanical stability and anatomical 
safety, thereby supporting physiological fibular 
motion and effective syndesmotic reduction. As 
such, Model 5 may represent a promising fixation 
strategy for the management of syndesmotic injuries, 
warranting further investigation in clinical settings 
to validate its long-term outcomes and potential role 
in treatment algorithms.
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