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Femoral fractures are a major health issue faced 
by the elderly population.[1,2] Incidence is predicted 
to double in the next 30 years, in parallel with the 
aging global population.[3-5] Early diagnosis and 
treatment not only facilitate the protection of the 
joint, but also help patients to sustain their quality 
of life and ambulation capacity in the postoperative 
period.[6] Pelvic X ray (PXR) is the simplest, cheapest, 
and fastest method for the diagnosis of femoral 
fractures. However, it does not provide 100% 
accuracy (Acc). It has been reported that about 2% 
all of hip fractures are not diagnosed by simple 
PXR.[7,8] Misdiagnosis in turn causes late treatment, 
extended postoperative recovery time, and increased 
treatment costs. Although femoral neck fracture 
detection rates using magnetic resonance imaging 
(MRI), computed tomography (CT), and radionuclide 
methods are higher, their routine use is not cost-
effective.[9]

The use of deep learning techniques in the field of 
medical image processing has increased in popularity 
in recent years. The facts that computers are not 
affected by environmental factors, do not forget what 
they have learned, and possess unlimited memory 
capacity suggest that if Acc rates are improved, 
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algorithms will directly influence the decision-
making processes of doctors regarding their patients 
in the near future.

The benefits of using deep learning techniques 
are early diagnosis of fractures, early initiation 
of treatment, shortening of postoperative recovery 
time, and prevention of increased costs due to 
misdiagnosis. The present study differs from others 
in its use of genetic algorithms (GAs) in addition 
to deep learning algorithm. Thus in this study, we 
aimed to detect PXR femoral neck fracture using 
deep learning techniques. 

PATIENTS AND METHODS

This retrospective study was conducted at Başkent 
University Adana Turgut Noyan Training and 
Research Centre between January 2013 and January 
2018. A total of 234 proximal PXR images were 
collected from 65 patients (32 males, 33 females; 
mean age 74.9 years; range, 33 to 89 years). Fractures 
were observed in 149 images while no fractures were 
observed in the remaining 85. Data augmentation 
methods were used to increase the size of the 
dataset.[10] To do so, the original images were 
rotated by 10, 20, and 30 degrees in clockwise and 
counterclockwise directions. In addition, Gaussian 
noise was added and mirror images were obtained. 
As a result, the total dataset included 2,106 images, 
of which 1,341 were fractured femoral necks and 
765 were non-fractured ones. The synthetically 

generated images obtained by data augmentation 
methods are shown in Figure 1. The study protocol 
was approved by the Başkent University Ethics 
Committee (Project no: KA19/46). The study was 
conducted in accordance with the principles of the 
Declaration of Helsinki.

Convolutional neural network (CNN) 
architecture is a deep learning approach commonly 
used in theoretical and practical studies on topics 
such as disease classification, MRI reconstruction, 
and effector protein prediction.[11-13] A common 
CNN architecture consists of input, convolutional, 
pooling, and fully connected layers. Additionally, 
batch normalization, rectified linear unit, and 
dropout layers can also be used to speed up the 
process and reduce overfitting. In the convolution 
layer, by using convolution operation, the input 
image is filtered resulting in feature maps. Basic 
features, basic patterns, and advanced patterns can 
be discovered from these feature maps depending 
on the number of convolutional layers used. The 
pooling layer reduces the size of the feature 
maps generated by the convolutional layer. As 
the size of the feature maps decrease, the elapsed 
time of the training phase is reduced. The fully 
connected layer converts the resulting feature 
maps into a pixel vector to prepare the input 
matrix for classification. In the current study, CNN 
architecture was used to classify the fractured and 
non-fractured bones.

FIGURE 1. Sample images from augmented dataset.
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Genetic algorithms can be described as a heuristic 
search that simulates the evolutionary process 
and are considered as a probabilistic optimization 
method based on the principles of evolution. Genetic 
algorithms are widely used in search and optimization 
problems to optimize user interface layouts, cancer 
diagnosis, and medical image denoising.[14-16]

When using GAs, each possible solution is 
accepted as an individual or a chromosome in the 
search space of the problem. In GA, the solution or 
individual refers to the values of the parameters to 
be optimized while the search space refers to the 
boundaries of the parameters. Individuals form the 
population and each individual is composed of genes 
which are the parameters needed to be optimized 
in the problem. The GA tries to find the optimal 
individual that satisfies the fitness function. In 
this study, GA was used to optimize classification 
performance.

The pseudo code of the GA is given below:

1. Initialize population randomly.

2. Evaluate fitness value of individuals in the 
population.

3. When stopping criteria are not met:

• Choose individuals for next generation.

•  Apply crossover and mutation.

•  Evaluate again.

The workflow of the proposed framework is 
illustrated in Figure 2. Regions containing both 

fractured and non-fractured femoral necks were 
cropped from the X-ray images manually. These 
cropped images were than rescaled to a specific size. 
To provide additional data to the CNN in the training 
phase, data augmentation was applied to all rescaled 
images. All cropped images became the same size, 
training with the CNN was initiated, and a model 
was constructed. Finally, test images were classified 
according to the constructed model as “fractured” or 
“non-fractured”. A GA block was used to optimize the 
hyperparameters of the CNN.

The CNN architecture in the proposed 
framework had five blocks, each including a 
convolutional layer, batch normalization layer, 
a rectified linear unit, and maximum pooling 
layer. Each convolutional layer had 3¥3 filters 
that produced 8, 16, 32, 32, and 32 feature maps, 
respectively. Batch normalization layers in each 
block took part between a convolutional layer and a 
rectified linear unit and normalized the activations 
for speeding up the training. Rectified linear unit 
applied a threshold to the input. Maximum pooling 
layers reduced the size of the feature maps using a 
filter size of 2¥2 and a stride value of two. After the 
last block, a dropout layer existed with a probability 
of 0.5. The last three layers of the CNN architecture 
were a fully connected layer that had two outputs 
(classes), a softmax layer, and a classification layer 
that computed cross entropy loss.

In the training process, the AdamOptimizer was 
utilized. The process was terminated after 50 epochs. 
Before each epoch, the training data were shuffled. 

FIGURE 2. General framework.
CNN: Convolutional neural network.
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Learning rate was dropped by a factor of 0.5 on 
every five epochs. Our CNN architecture is given in 
Figure 3. The training process was repeated for four 
image sizes of 50¥50, 100¥100, 200¥200, and 400¥400 
pixels.

The GA had population sizes of 10, 50, and 
100 chromosomes for three different setups. The 
algorithm was repeated until 10 generations were 
reached. One chromosome had 10 variables or 
genes. The first five represented the filter sizes and 
the second five represented the number of feature 
maps produced by the convolutional layers. Since 
there were five convolutional layers in the CNN 
architecture, the filter size and feature maps of each 
layer should have been optimized. A representation 
of a chromosome is given in Figure 4.

To select parents for crossover, stochastic 
uniform selection was used. The selection algorithm 
arranged each candidate parent on a line according 
to its length. This length was calculated by dividing 
the fitness value by the sum of all fitness values. 
Each candidate occupied a space according to 
its probability of being selected on the line. A 
random number and a step size were generated 
for initiating the selection. The algorithm used a 
random number to choose the first parent, and then 

moved along the line by the step size to choose 
other parents.

After selection of the parents, a random binary 
vector was created for the crossover operation. Since 
the random binary vector contained only zeros and 
ones, its bits represented the first parent (for one) 
and second parent (for zero) to create a child. This 
algorithm was labeled as the scattered crossover 
and is presented in Figure 5. The mutation operation 
simply changed the genes in the chromosomes 
randomly.

Five-fold cross validation tests were performed to 
obtain the performance of the proposed framework in 
terms of sensitivity (i), specificity (ii), Acc (iii), F1 score 
(iv), and Cohen’s kappa coefficient (v). Five metrics 
for classification performance are given below. 
Referred to true positives-TP (fractured femoral 
neck), false positives-FP (fractured incorrectly), 
true negatives-TN (non-fractured femoral neck), 
and false negatives-FN (non fractured incorrectly), 
respectively.

Sensitivity (Sn) was measured as the ratio between 
correctly classified fractured femoral necks and all 
fractured femoral necks:

(i) Sn=TP/(TP+FN)

FIGURE 3. Proposed convolutional neural network architecture.
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Specificity (Sp) was measured as the ratio between 
correctly classified non-fractured femoral necks and 
all non-fractured femoral necks:

(ii) Sp=TN/(TN+FP)

Accuracy was the ratio between correctly classified 
non-fractured & fractured femoral necks and all 
samples:

(iii) Acc=(TP+TN)/(TP+FP+TN+FN)

F1 score (F1) was measured as the harmonic 
average of the precision and recall and used as a 
measure of a test’s Acc:

(iv) F1=(Precision*Recall)/(Precision+Recall)*2
Precision=TP/(TP+FP) 

Recall=TP/(TP+FN) 

Cohen’s kappa (kappa) coefficient was used to 
measure inter-rater agreement for categorical items by 
considering the chance factor of agreement:

(v) Kappa=(Acc-pe)/(1-pe)
pe=(TN+FP)*(TN+FN)+(TP+FN)*(TP+FP)/(TN+TP+FN+FP)2 

RESULTS

The results of the five-fold cross validation 
experiments were obtained using the evaluation 
metrics (Table I). The best performance in terms of 
Acc, kappa, F1 score, and specificity was obtained 
when cropped images were rescaled to 50¥50 pixels. 
The best sensitivity result was obtained when 
100¥100 rescaled images were used. On the other 
hand, kappa metric showed that when 50¥50 pixels 
image size was used to feed the CNN, the classifier 
performance was more reliable than the other 
image sizes. The evaluation results and optimized 
hyperparameters using GA are given in Table II.

Selection of a population size of 10 resulted in a 
1% decrease (from 77.7 to 76.7%) in Acc for images 
of 50¥50 pixels. The best results in terms of Acc 
were reached by using a population of 50 and 100. 
Although a population size of 100 outperformed 
using a population size of 50 in terms of sensitivity, 
the reverse was determined in terms of specificity. 
F1 scores were very close to the Acc. The kappa 
coefficient showed that the reliability of the classifier 

FIGURE 4. Chromosome representation in genetic algorithm.
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FIGURE 5. Crossover operation in genetic algorithm.
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TAbLE I
Performance comparison for different image sizes

Image size Accuracy Kappa F1 Sensitivity Specificity

50¥50 0.777 0.518 0.825 0.825 0.693

100¥100 0.770 0.497 0.823 0.837 0.654

200¥200 0.729 0.394 0.796 0.830 0.552

400¥400 0.712 0.389 0.780 0.803 0.552
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performances was almost the same when using a 
population size of 50 or 100. On the other hand, using 
a small population size decreased computational 
time and thus a population size of 50 can be accepted 
as the optimal solution in the present case. Values 
varied for both filter sizes and number of feature 
maps (Table II). As a result, the use of GA improved 

overall Acc by 1.6%. For other metrics, the effect of 
using GA on performance can be seen in Figure 6.

Additionally, confusion matrices for two 
different scenarios (with and without GA) are given 
in Figure 7. According to FN statistics, of 1,341 
fractured images, the system mis-detected 235 

TAbLE II
Performance comparison for different population sizes using genetic algorithm on 50¥50 image size

Population size Optimized hyperparameters

Filter size 

Number of feature maps

Accuracy Kappa F1 Sensitivity Specificity 

10 4 10 4 9 23 

88 54 81 69 118

0.767 0.497 0.817 0.817 0.681

50 3 4 10 10 15 

18 122 117 80 79

0.793 0.554 0.836 0.829 0.729

100 3 10 24 9 24 

111 123 114 56 73

0.793 0.552 0.838 0.838 0.714

Accuracy Kappa F1 Sensitivity Specificity

  Without GA 0.777 0.518 0.825 0.825 0.693

  With GA 0.793 0.554 0.836 0.829 0.729
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FIGURE 6. Effect of genetic algorithm on performance metrics. 
GA: Genetic algorithm.

True negatives False negatives True negatives False negatives

530 235 558 230

False positives True positives False positives True positives

235 1,106 207 1,111

(a) Confusion matrix for 50¥50 image 
size without GA

(b) Confusion matrix for 50¥50 image 
size with GA and population size of 50

FIGURE 7. Confusion matrices with and without genetic algorithm. 
GA: Genetic algorithm.
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images versus 230 with GA included. False positive 
rates revealed that of the 765 non-fractured images, 
235 were labeled as fractured if we excluded GA. On 
the other hand, this number was reduced to 207 if 
we included GA. In general, the system successfully 
detected approximately 83% of fractured images. 
Similarly, the detection of non-fractured cases was 
computed at approximately 73%.

DISCUSSION

In this study, femoral neck fracture was detected 
in the 50¥50 size anteroposterior (AP)-pelvis 
radiography with 83% Acc using the GA-supported 
deep learning approach. To our knowledge, this is 
the first study in which femoral neck fractures were 
detected using deep learning techniques. Despite the 
modest sample size and unstable data distribution, 
sensitivity and specificity values of 83% and 73% 
were obtained, respectively.

Extraordinary developments have occurred 
in the image processing technology over the last 
two decades. It is anticipated that the use of this 
technology in the processing and evaluation of 
medical images will facilitate the diagnosis of 
diseases and regulation of treatments. Olczak et 
al.[17] worked on distal radius radiographies due to 
the high incidence rate of these types of fractures 
and calculated a fracture detection rate in the distal 
radius radiography of 83%.

Kim and MacKinnon[18] tested deep learning 
algorithms, which they trained with 694 non-
fracture wrist radiographies against 695 distal 
radius fracture radiographies and with 50 distal 
radius fracture and 50 non-fracture distal radius 
plain radiographies. They reported sensitivity 
of 0.9 and specificity of 0.88. Additionally, they 
claimed that this technique is largely transferable, 
and therefore, has many potential applications in 
medical imaging, which may lead to significant 
improvements in workflow productivity and 
clinical risk reduction.

Furthermore, Pranata et al.[19] obtained 
98% sensitivity in the classification of calcaneus 
fractures with the help of CT images and deep 
learning technique. In their study, two types of 
CNN architectures with different network depths 
were evaluated and compared for the classification 
performance of CT scans into fracture and non-fracture 
categories based on coronal, sagittal, and transverse 
views. Their bone fracture detection algorithm used 
the speeded-up robust features method, Canny edge 
detection, and contour tracing to incorporate fracture 

area matching. They were very successful in both the 
detection and classification of the fraction. Compared 
to conventional, CT scan has higher resolution and 
better image quality. However, patients are exposed 
to a higher dose of radiation during CT scan.

Unlike other studies, Cheng et al.[20] used the 
Deep Convolutional Neural Network (DCNN) 
method to detect hip fractures in AP plain 
pelvis radiography. They trained the system they 
developed with 25,505 PXR. The authors also used 
visualization algorithm gradient-weighted class 
activation mapping to confirm the validity of the 
model. Algorithm Acc was reported as 91% and 
sensitivity as 98% while the false-negative rate for 
identifying hip fractures was 2%, and area under 
the curve (AUC) was 0.98. In addition, 95.9% Acc 
was determined in lesion identification using 
the visualization algorithm.[20] Cropped images 
are utilized in deep learning techniques that 
evaluate medical images to increase validation 
Acc and to avoid “black box” mechanisms.[21,22] 
When cropped to include the features required 
for target recognition, DCNN will detect the 
lesion more easily and quickly. Cheng et al.[20] 
reduced the image matrix size to 512¥512 pixels 
instead of cropping images. The study’s most 
important development was that conclusion was 
reached without cropping the radiological image 
and marking a specific area.

Gale et al.[21] trained the algorithm they developed 
to detect hip fractures using 53,000 AP pelvis 
radiographies. During this training, they reduced the 
image resolution of the PXR from 3000¥3000 pixels 
to 1024¥1024. Additionally, patients who previously 
underwent hip surgery were trained separately by a 
radiologist. They found that an AUC value of 0.994 
was, to the best of their knowledge, the highest level 
ever reported for automated diagnosis in any large 
scale medical task, not just in radiology. They stated 
that this detection rate was at a similar level to expert 
radiologist.

Hemanth and Anitha[23] proposed modified GAs 
for feature selection. Their aim was to reduce the 
number of features that were obtained from abnormal 
magnetic resonance brain tumor images to feed the 
back propagation neural network classifier. As a 
result, their proposed method yielded 98% Acc, 96% 
sensitivity, and 98% specificity with reduced number 
of features.

Although the results were found to be promising, 
there are some limitations of our study. First of 
all, we worked on a small-sized dataset. Since 
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deep learning methods require as many images 
as possible, we tried to overcome this situation by 
applying data augmentation techniques. By doing 
so, we have shown that promising results can be 
achieved with a small-sized dataset. However, 
increasing the number of X-ray images still 
continues to be an important factor for achieving 
better results. In addition to increasing the number 
of images, obtaining more images from different 
healthcare facilities will increase the diversity 
and more reliable results can be achieved. All 
experiments in this study were run on an outdated 
graphic card. With the use of new generation and 
multiple graphics cards, training time will be 
further reduced and the number of experiments 
with different setups will increase. As a future 
work, we aim to include MRI scans in addition to 
X-ray images. Heuristic approaches such as ant 
colony, simulated annealing, and particle swarm 
optimization are planned to be compared with GA 
for optimization.

In conclusion this experimental study utilized 
CNNs in the detection of bone fractures in 
radiography. The trained model yielded an overall 
Acc of 77.7% when 50¥50 image sizes were used. 
With the inclusion of GA, this rate increased by 
1.6%. The detection rate of fractured bones was 
found to be 83%. A kappa coefficient of 55% 
was obtained, indicating an acceptable agreement. 
Although the dataset was unbalanced, the results 
can be considered promising. It was observed that 
use of smaller image size decreases computational 
cost and provides better results according to 
evaluation metrics.
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